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Acoustic Confusions

the station signs are in deep in english -14732
the stations signs are in deep in english -14735
the station signs are in deep into english -14739
the station 's signs are in deep in english -14740
the station signs are in deep in the english -14741
the station signs are indeed in english -14757
the station 's signs are indeed in english -14760
the station signs are indians in english -14790
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Noisy Channel Model: ASR

=\We want to predict a sentence given acoustics:

w* = arg max P(w|a)
o

=The noisy-channel approach:
w* = arg max P(w|a)
w
= arg max P(a|lw)P(w)/P(a)
w

o arg max P(a|w) P(w)
-

Acoustic model: score fit between Language model: score /_\l
sounds and words plausibility of word sequences

Noisy Channel Model: Translation

“Also knowing nothing official about, but having guessed and
inferred considerable about, the powerful new mechanized
methods in cryptography—methods which | believe succeed
even when one does not know what language has been
coded—one naturally wonders if the problem of translation
could conceivably be treated as a problem in cryptography.
When | look at an article in Russian, | say: ‘This is really
written in English, but it has been coded in some strange
symbols. | will now proceed to decode.” ”

Warren Weaver (1947)

Perplexity

N-Gram Models

= How do we measure LM “goodness”? geese 05
= The Shannon game: predict the next word sauce 0.4
dust 0.05
When I eat pizza, | wipe off the

mice 0.0001

= Formally: test set log likelihood
the 1e-100

log P(X|60) = Z log(P(w|6)) 3516 wipe off the excess
L 1034 wipe offthe dust
. . " 547 wipe off the sweat

= Perplexity: “average per word branching factor” (not per-step) 518 wipe off the mouthpiece
120 wipe off the grease
0 wipe of the sauce

log P(X|6) 0 wipe off the mice
perp(X,0) = exp (-T ) P

28048 wipe off the *
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N-Gram Models

Use chain rule to generate words left-to-right
Plwy...w,) = H P(w;|wy ... w;—y)
Can’t condition atomically on the entire left context

P(??? | The computer | had put into the machine room on the fifth floor just)
N-gram models make a Markov assumption

P(wy...w,) = H P(w;|wi—j ... wi—y)

P(please close th’o door) = P(please|START) P(close|please) ... P(STOP|door)

Empirical N-Grams

= Use statistics from data (examples here from Google N-Grams)

198015222 the first

194623024 the same
168504105 the following f’(door\thn) _
158562063 the world

14112454 the door

23135851162 the *

Training Counts

= This is the maximum likelihood estimate, which needs modification

10

Increasing N-Gram Order

= Higher orders capture more correlations

Bigram Model Trigram Model
198015222 the first 197302 close the window
194623024 the same 191125 close the door
168504105  the following 152500 close the gap
158562063  the world 116451 close the thread

87298 close the deal
14112454 the door

62 the *

P(door | the) = 0.0006 P(door | close the) = 0.05

Increasing N-Gram Order

= o To him swallowed confess hear Bofil Which. OF save on tail for are ny device and
rote life have

» Every enter now severally 50, let

= w Ml he lafe speaks: or' a marc to g loss Frst you ener

o Are where exeant and b have rise excellency ok of. Sleep knave we. near: vl
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What's in an N-Gram?

= Just about every local correlation!

* Word class restrictions: “will have been

Morphology: “she , “they ___’

Semantic class restrictions: “danced a

Idioms: “add insultto ___

World knowledge: “ice caps have ___’

= Pop culture: “the empire strikes

= But not the long-distance ones

® “The computer which | had put into the machine room on the fifth floor just ___.

Linguistic Pain

= The N-Gram assumption hurts your inner linguist
= Many linguistic arguments that language isn’t regular
* Long-distance dependencies
= Recursive structure

= Atthe core of the early hesitance in linguistics about statistical methods

® Answers

N-grams only model local correlations... but they get them all

As N increases, they catch even more correlations

N-gram models scale much more easily than combinatorially-structured LMs

Can build LMs from structured models, eg grammars (though people generally don’t)
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Structured Language Models

= Bigram model:

[texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house,
said, mr., gurria, mexico, 's, motion, control, proposal, without, permission,
from, five, hundred, flf'ty, flve yen]

= [outside, new, car, parking, lot, of, the, agreement, reached]
= [this, would, be, a, record, november]

= PCFG model:
= [This, quarter, ‘s, surpr|5| l:‘gly,lndependent attack, paid, off, the, risk,
involving, IRS, leaders, and, transportation, prices, .
[It, could, be, announced, sometime, .]
[Mr., Toseland believes, the average defense, economy, is, drafted, from,
sllghtly, more, than 12, “stoc s,

N-Gram Models: Challenges

15
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Sparsity

Please close the first door on the left.

3380 please close the door
1601 please close the window
1164 please close the new
1159 please close the gate

0 please close the first

13951 please close the *

Smoothing

* We often want to make estimates from sparse statistics:

P(w | denied the) T
3 allegations
2 reports
1 claims
1 request
7 total

HIP

allegations

= Smoothing flattens spiky distributi

ons so they generalize better:

P(w | denied the) —
2.5 allegations. ]
1.5 reports —
0.5 claims
0.5 request
2other

allegations

lbenefits

L ¢

7 total

= Very important all over NLP, but easy to do badly

17
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Back-off

Please close the first door on the left.

4-Gram 3-Gram 2-Gram
3380 please close the door 197302 close the window 198015222 the first
1601 please close the window | |191125 close the door 194623024 the same
1164 please close the new 152500 close the gap 168504105 the following
1159 please close the gate 116451 close the thread 158562063 the world
0 please close the first 8662 close the first
13951 please close the * 3785230 close the * 23135851162 the *

0.0 0.002 0.009

Specific but Sparse ¢ >
AP(wlw_1,w-2) + N P(w

Dense but General

—1) + N'P(w)

Discounting

= Observation: N-grams occur more in training data than they will later

Empirical Bigram Counts (Church and Gale, 91)

Count in 22M Words ‘ Future c* (Next 22M)

[EN P PO P PN

= Absolute discounting: reduce counts bya small consta
“shaved” mass to a model of new events

c(w',w) —

Pag(w|w') = 0

nt, redistribute

¢4 aw)P(w)
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Fertility

= Shannon game: “There was an unexpected

delay? Francisco?

= Context fertility: number of distinct context types that a word occurs in
= What is the fertility of “delay”?
= What is the fertility of “Francisco”?
= Which is more likely in an arbitrary new context?

= Kneser-Ney smoothing: new events proportional to context fertility, not frequency

Better Methods?

100,000 Katz
-=-100,000 KN
1,000,000 Katz
—1,000,000 KN
10,000,000 Katz
-=-10,000,000 KN

—all Katz
[Kneser & Ney, 1995] —allKN
P , , 0 55 +—T—————T——————
W) « [{w": c(w',w) > 0}] 12345678912
= Can be derived as inference in a hierarchical Pitman-Yor process [Teh, 2006] n-gram order
044 .
+051BPI2, o .o v *
P +0.15BP/x2 searching for the best 192593

042 oF gfortheright 45805
5 +039B8PA2 ing for the cheapest 44965
o searching for the perfect 43959
@ 04 . searching for the truth 23165 Google N-grams
© - searching for the * 19086 . 2
£ . searching for the most 16512 e ;35;:::
* 038 |+0628PK2 searching for the latest 12670 £ 770000 < 220 unique counts
8 A target KN —+ searching for the next 10120 « 4 billion n-grams total
= - +dcnews KN - searching for the lowest 10080 Hion n-grams cot

038 | " . +webnews KN -+ searching for the name 8402

P targetSB o searching for the finest 8171
~ +0.66BP/x2 +dcnews SB -
034 | +webnews SB -~ -
) +web SB -«
10 100 1000 10000 100000  1e+06

LM training data size in million tokens

[Brants et al, 2007]
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Storage

(@ Contextncoding_ (b) Context Delas (©Bits Reguired
w c val| |Aw| Ac |val| l|Aw]| JAc| ||vall

» For 5+-gram models, Tos3 | 1517655 | 3 | [[1933] 15176585 | 3 % %0 |3
need to store between [1933] 15176587 | 2 0 2 1 2 3 3

100M and 108 context- 22 ms | 1| [0 = [ EEEEE

- won e [ s | [0 w0 [s][2] o [

word-count triples 1933 | 15179801 | 1 ETEE 2 2 |3

1035 | 1s17esws | 298 | [ [wsvosss o8 | [ | 36 |18

woss s | 1| [0 & | ¢ I E

» Make it fit in memory by delta encoding scheme: store deltas instead of
values and use variable-length encoding

Pauls and Klein (2011), Heafield (2011)

Slide: Greg Durrett

Graveyard of Correlations

Skip-grams

Cluster models

Topic variables

Cache models

Structural zeros
Dependency models
Maximum entropy models
Subword models

25
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Entirely Unseen Words

® What about totally unseen words?

= Classical real world option: systems are actually closed vocabulary
= ASR systems will only propose words that are in their pronunciation dictionary
= MT systems will only propose words that are in their phrase tables (modulo special models for
numbers, etc)
= Classical theoretical option: build open vocabulary LMs
= Models over character sequences rather than word sequences
= N-Grams: back-off needs to go down into a “generate new word” model

= Typically if you need this, a high-order character model will do

®= Modern approach: syllable-sized subword units (more later)

Neural LMs: Preview

27
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A GPT2 Continuation

= The computer | had put into the machine room on the fifth floor just
just outside our landing was taken by a lot of people. It was going to be
recovered from outside the machine room as soon as we could, but
after the machine room was shut down, we had to open all of the
windows and doors to save ourselves, and the computer would have
been lost. Luckily we are prepared for this. We had five steel doors on
each side of the landing to hold any rain and wind that might have hit,
so we weren't affected by the storm.

The situation was really grim for days. A few days before, the Apache at
Qush Tefah had been shot. This was the most damaged machine in the
Armies Corps. The command was only meant to repair Qush

A GPT2 Continuation

= | shall go seek the traitor Gloucester, when he hath declared his
vengeance. Cunegund Shall I back her to kill my cousin in my stead?
Witbane Far first shall the brother take his Queen's soul and that in
the flames. Clotilda For to slay the King of Scotland with, the blood
of my cousin, lie true; And she shall have the right to my feather."
Sefton leapt into the rushes, and stole along in the sunlight: the
small figure flashed like lightning in the west. In the likeness of a
snare he had laid to catch the rushes and made of them a snares, a
road to flee from his pursuers; but he now came to an oak where
the branches were wreathed in an oak-

29
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Words: Clusterings and Embeddings

Stuffing Words into Vector Spaces?

Cartoon: Greg Durrett

31
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Distributional Similarity

Key idea in clustering and embedding methods: characterize a word by the

words it occul

“You can tell

rs with (cf Harris’ distributional hypothesis, 1954)
a word by the company it keeps.” [Firth, 1957]

Harris / Chomsky divide in linguistic methodology

B rhar the downturn was over +
\ context counts

Clusterings

33
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Clusterings

= Automatic (Finch and Chater 92, Shuetze 93, many others)

word

neatest neighbors

accompanted | submitted banned financed developed autharized headed canceled awarded barred
~Scompanied ]

[most
Causing

virtually merely formally fully quite officially Just nearly only Tess

Teflecting forcing providing cteating producing becoming carrying particularly
Seciions courses payments Toses compnters periormancss vioations Tevos PITires

directors | professionals investigations materials competitors agreements papors fransactions
‘mood 1oof eye image Lool song pool scene gap voice
Japanese Ghiiess ragh amsres westars- srab Torogh.enropesn Teoral voviel TRy
represent Teveal atiend deliver reflect choose contain impose manage establish retain
think m
Tyork | angeles francisco sox ouge Kong diego zone vegas imning layer

o
st

Tthey [ we you I he she nobody who it everybody there

= Manual

Through in at over into with from for by across

‘might would could cannot will should can may doés helps

(e.g. thesauri, WordNet)

“Vector Space” Methods

= Treat words as points in R" (eg
Shuetze, 93)

Form matrix of co-occurrence
counts

SVD or similar to reduce rank (cf
LSA)

Cluster projections

People worried about things like:
log of counts, U vs UZ

= This is actually more of an
embedding method (but we
didn’t want that in 1993)

context counts

context counts

I v

Cluster these 50-200 dim vectors instead.

35
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Models: Brown Clustering

= (Classic model-based clustering (Brown et al, 92)

= Each word starts in its own cluster
= Each cluster has co-occurrence stats

= Greedily merge clusters based on a
mutual information criterion

Equivalent to optimizing a class-based
bigram LM.

P(wilwi—1) = P(ci|ci—1) P(wilc:)

Produces a dendrogram (hierarchy) of ciusters

-
-
=

Embeddings

Most slides from Greg Durrett

37
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Embeddings

= Embeddings map discrete words (eg
|V| = 50k) to continuous vectors (eg d
=100)

= Why do we care about embeddings?
= Neural methods want them

= Nuanced similarity possible;
generalize across words

= We hope embeddings will have
structure that exposes word
correlations (and thereby meanings)

great
good
enjoyable
dog
bad

Embedding Models

Idea: compute a representation of each word from co-occurring words

the dog bit the man

Token-Level

VI

word pair
counts

Type-Level

= We'll build up several ideas that can be mixed-and-matched and which

frequently get used in other contexts

39

40
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word2vec: Continuous Bag-of-Words

» Predict word from context

d-dimensional

dog word embeddings
gold label = bit,
Multiply no manual labeling
by W required!
th sized size V| xd
e
P(w|w_y,wsy) = softmax (W (c(w_1) + c(wy1)))

» Parameters: d x |V| (one d-length context vector per voc word),

|V| x d output parameters (W) Mikolov et al. (2013)

word2vec: Skip-Grams

» Predict one word of context from word

gold = dog

Multiply
i

P(w'|w) = softmax(We(w))

bit
» Another training example: bit -> the

» Parameters: d x |V| vectors, |V| x d output parameters (W) (also
usable as vectors!) .
Mikolov et al. (2013)

41
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word2vec: Hierarchical Softmax

P(w|w_y,wyy) = softmax (W (c(w_1) + c(wy1)))

P(w'|w) = softmax(We(w))

» Matmul + softmax over |V| is very slow to compute for CBOW and SG
» Huffman encode

vocabulary, use binary
E classifiers to decide
which branch to take
the . .
a » log(|V|) binary decisions
» Standard softmax:
[IV] xd] xd

» Hierarchical softmax:
log(|V|) dot products of size d,
|V| x d parameters

Mikolov et al. (2013)

word2vec: Negative Sampling
» Take (word, context) pairs and classify them as “real” or not. Create
random negative examples by sampling from unigram distribution
(bit, the) =>+1
(bit, cat) =>-1 1)@ _ 1‘,“’,_ (:) _
. w-e
(bit, @) => -1 e
(bit, fish) => -1

Jw-e
€

words in similar
contexts select for
similar ¢ vectors

» dx |V| vectors, d x |V| context vectors (same # of params as before)
sampled

1
» Objective = log P(y = 1|w,c) + T Z log P(y = O|w;, ¢)
i=1

Mikolov et al. (2013)

43

44
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fastText: Character-Level Models

» Same as SGNS, but break words down into n-grams withn =3 to 6

where:

GloVe

= |dea: Fit co-occurrence matrix directly (weighted least squares)

3-grams: <wh, whe, her, ere, re> [\ _
4-grams: <whe, wher, here, ere>, % R os
5-grams: <wher, where, here>, V| | word pair T= 3" F(Xig) (Wl + b+ by —log X)) re?:
counts = o
6-grams: <where, where> : .
» Replace W - C in skip-gram computation with Z Wy - C . ) .
gEngrams = Type-level computations (so constant in data size)
= Currently the most common word embedding method
» Advantages?
Bojanowski et al. (2017) Pennington et al, 2014
45 46
Bottleneck vs Co-occurrence Structure of Embedding Spaces
= Two main views of inducing word structure = How can you fit 50K words into a 64-
dimensional hypercube? king
= Co-occurrence: model which words occur in similar contexts queen
= Bottleneck: model latent structure that mediates between ® Orthogonality: Can each axis have a \
words and their behaviors global “meaning” (number, gender,
animacy, etc)?
= These turn out to be closely related! = Global structure: Can embeddings have
) algebraic structure (eg king—man + —
woman = queen)? g iman
woman
47 48
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Bias in Embeddings

= Embeddings can capture biases in the data! (Bolukbasi et al 16)

At — Womat T Ap—
mall — woman ~ klllg — queen

= Debiasing methods (as in Bolukbasi et al 16) are an active area of research

Debiasing?

» Identify gender subspace with gendered
words

» Project words onto this subspace

homemaker
» Subtract those projections from she /\ | *® homemaker’
the original word \
woman

he
man

Bolukbasi et al. (2016)

49 50
Reminder: Feedforward Neural Nets
P(y|x) = softmax(Wg(V f(x)))
num_classes
d hidden units probs
Neural Language Models
v HOHH w
g
dxnmatrix ponlinearity num_classes x d
n features (tanh, relu, ...)  matrix
51 52
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A Feedforward N-Gram Model?

the

v W W el

[please [ close |

Early Neural Language Models

et output = Pl = 1 contet)
= Fixed-order feed-forward
neural LMs s —

* EgBengioetal, 03 Fvd

= Allow generalization across [
. an

contexts in more nuanced
ways than prefixing

= Allow different kinds of
pooling in different contexts

®= Much more expensive to train

Bengio et al, 03

53

54

Using Word Embeddings?

the

v W W el

[please [ close |

Using Word Embeddings

» Approach 1: learn embeddings as parameters from your data
» Often works pretty well

» Approach 2: initialize using GloVe, keep fixed
» Faster because no need to update these parameters

» Approach 3: initialize using GloVe, fine-tune

» Works best for some tasks

55

56
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Limitations of Fixed-Window NN LMs?

= What have we gained over N-Grams LMs?

= What have we lost?

= What have we not changed?

Recurrent NNs

57

58

Slides from Greg Durrett / UT Austin , Abigail See / Stanford

RNNs

» Feedforward NNs can’t handle variable length input: each position in the
feature vector has fixed semantics

f ii 1 f f T
the movie was great that was great !
» These don’t look related (great is in two different orthogonal subspaces)
» Instead, we need to:
1) Process each word in a uniform way

2) ...while still exploiting the context that that token occurs in

General RNN Approach

» Cell that takes some input x, has some hidden state h, and updates that

hidden state and produces output y (all vector-valued)
output y

previous h

next h

(previous c)

(next c)

input x

59

60
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RNN Uses

» Transducer: make some prediction for each element in a sequence

DT NN VBD JJ

output y = score for each tag, then softmax

the movie was great

» Acceptor/encoder: encode a sequence into a fixed-sized vector and use

that for some purpose
predict sentiment (matmul + softmax)

Wﬂ—% translate
paraphrase/compress

the movie was great

Basic RNNs

h; = tanh(Wx; + Vhy_1 + by)

output yt
p!'ev I » Updates hidden state based on input
hidden and current hidden state
state hyy —— — h:
yt = tanh(Uh¢ + b))
I » Computes output from hidden state
input x;

» Long history! (invented in the late 1980s)
Elman (1990)

Training RNNs Problem: Vanishing Gradients
Q—W—Q— predict sentiment predict sentiment
the movie was great the movie was great
» “Backpropagation through time”: build the network as one big w w
computation graph, some parameters are shared
» RNN potentiall ds to | how to “ ber” inf tion fi _— o . ) -
PO eln ally needs to learn how to ‘remembert information for a = Contribution of earlier inputs decreases if matrices are contractive (first
long time! eigenvalue < 1), non-linearities are squashing, etc
it was my favorite movie of 2016, though it wasn’t without problems -> + = Gradients can be viewed as a measure of the effect of the past on the future
» “Correct” parameter update is to do a better job of remembering the = That's a problem for optimization but also means that information naturally
sentiment of favorite decays quickly, so model will tend to capture local information
Next slides adapted from Abigail See / Stanford

63
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Core Issue: Information Decay

« The main problem is that it’s too difficult for the RNN to learn to
preserve information over many timesteps.

¢ Inavanilla RNN, the hidden state is constantly being rewritten
RO =g (Wth*U + Wea® 4 b)

« How about a RNN with separate memory?

Problem: Exploding Gradients

Q—w—?— predict sentiment

the movie was great

‘Without clipping

= Gradients can also be too large

= Leads to overshooting / jumping around
the parameter space

= Common solution: gradient clipping

With clipping

65 66
Key Idea: Propagated State RNNs
o <3
s
R SR Il ® ® ©
t t t
Cell State A
of A
= Information decays in RNNs because it gets multiplied each time step
= |dea: have a channel called the cell state that by default just gets | |
propagated (the “conveyer belt”) @ ® @
= Gates make explicit decisions about what to add / forget from this channel
Image: ithub.io/posts/2015-08-1 ing-LSTMs/
67 68
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LSTMs

® ©
I

A @G>
A ® &
[o] o] [Bm) (o]

69

70

LSTMs

» Ignoring recurrent state entirely:

» Lets us get feedforward layer over token

» Ignoring input:

» Lets us discard stopwords

—> » Summing inputs:

» Lets us compute a bag-of-words
representation

What about the Gradients?

® ® ©
t ! t

‘similar gradient <-E

A A
S

» Gradient still diminishes, but in a controlled way and generally by less —
usually initialize forget gate = 1 to remember everything to start

;<- gradient |

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

71

72
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Gated Recurrent Units (GRUs)

trols what parts of

dated vs pre:

u®) =g (Wuh"") + U 4 bu)

) = (th(m) TU2 4 br)

New hidden state content: reset gate

| RO = tanh (Wi 0 hD) 4 U3z + b,
RO = (1 - u®) o A 4 u® o BO

How does this solve vanishing gradient?
Like LSTM, GRU makes it easier to retain info
long-term (e.g. by setting update gate to 0)

Uses of RNNs

Slides from Greg Durrett / UT Austin

73

74

Reminder: Tasks for RNNs

= Sentence Classification (eg Sentiment Analysis)

predict sentiment
the movie was great
= Transduction (eg Part-of-Speech Tagging, NER)
DT NN VBD JJ

the movie was great
= Encoder/vecoaer (eg Iviacnine Iranslation)

Encoder / Decoder Preview

the movie was great
» Encoding of the sentence — can pass this a decoder or make a
classification decision about the sentence
» Encoding of each word — can pass this to another layer to make a
prediction (can also pool these to get a different sentence encoding)

» RNN can be viewed as a transformation of a sequence of vectors into a
sequence of context-dependent vectors

75

76
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Multilayer and Bidirectional RNNs

I | I— | —  —

the movie was great the movie was great

» Token classification based on

Training for Sentential Tasks

P(y|x)

the movie was great

» Loss = negative log likelihood of probability of gold label (or use SVM
or other loss)

» Sentence classification . . L,
based on concatenation concatenation of both directions K h h enti .
] token representations » Backpropagate through entire networl
of both final outputs . .
| — » Example: sentiment analysis
77 78
Training for Transduction Tasks Example Sentential Task: NL Inference
Premise Hypothesis
A boy plays in the snow entails A boy is outside
A man inspects the uniform of a figure contradicts The man is sleeping
the movie was great An older and younger man smiling neutral Two n.1en are smil\n; and
laughing at cats playing
» Loss = negative log likelihood of probability of gold predictions, » Long history of this task: “Recognizing Textual Entailment” challenge in
summed over the tags 2006 (Dagan, Glickman, Magnini)
» Loss terms filter back through network » Early datasets: small (hundreds of pairs), very ambitious (lots of world
» Example: language modeling (predict next word given context) knowledge, temporal reasoning, etc.)
79 80
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SNLI Dataset

» Show people captions for (unseen) images and solicit entailed / neural /
contradictory statements

» >500,000 sentence pairs 3"""“"’;‘“"‘"““
» Encode each sentence and process m";’“""
100D LSTM: 78% accuracy 2000 tanh bpes
300D LSTM: 80% accuracy CE
PN

(Bowman et al., 2016) 100d premise 100d hypothesis
300D BiLSTM: 83% accuracy sc,,ml ‘model ‘ ‘ scn'zml ‘model

(Liu et al., 2016) with premise input with hypothesis input
» Later: better models for this Bowman et al. (2015)

Visualizing RNNs

Slides from Greg Durrett / UT Austin

81 82
LSTMs Can Model Length LSTMs Can Model Long-Term Bits
» Train character LSTM language model (predict next character based on » Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code history) over two datasets: War and Peace and Linux kernel source code
» Visualize activations of specific cells (components of ¢) to understand them » Visualize activations of specific cells to see what they track
» Counter: know when to generate \n » Binary switch: tells us if we’re in a quote or not
h
fy, o1
P T
Karpathy et al. (2015) Karpathy et al. (2015)
83 84
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LSTMs Can Model Stack Depth

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track
» Stack: activation based on indentation

L
match_class_bits(int class, u32 *mask)

Karpathy et al. (2015)

LSTMs Can Be Completely Inscrutable

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code
» Visualize activations of specific cells to see what they track

» Uninterpretable: probably doing double-duty, or only makes sense in the
context of another activation
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Karpathy et al. (2015)
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